Journal of Organometallic Chemistry, 256 (1983) C19-C22
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

PREPARATION AND X-RAY CRYSTAL STRUCTURE OF $\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$, A DIPLATINUM(I) COMPLEX CONTAINING THE BIS(DIPHENYLPHOSPHINO)METHANIDE LIGAND IN A NOVEL BRIDGING ROLE

MICHAEL P. BROWN, AHMAD YAVARI, Donnan Laboratories, Liverpool University, P.O. Box 147, Liverpool L69 3BX (Great Britain) LJUBICA MANOJLOVIĆ-MUIR and KENNETH W. MUIR Department of Chemistry, Glasgow University, Glasgow G12 8QQ (Great Britain) (Received August'1st, 1983)

Summary

Deprotonation of the complex cation of $\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ with $\mathrm{KOH} / \mathrm{EtOH}$ affords $\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$, the X-ray crystal structure of which shows that the bis(diphenylphosphino)methanide ligand bridges the two platinum atoms by formation of a fourmembered PtCPPt dimetallacycle.

Although there are many diplatinum complexes containing the ligand $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ (dppm) [1], there are no reports of diplatinum complexes containing the deprotonated form of this ligand, viz. the methanide ion $\left[\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right]$ (I). This is surprising since I and its methyl analogue $\left[\mathrm{Me}_{2} \mathrm{PCHPMe}_{2}\right]^{-}$(II) are known to form several di- and poly-nuclear complexes with other transition metals. Bridging modes observed are as depicted by A [2], B [3] and C [4]. We now report a diplatinum complex containing I in the novel bridging mode D.

Previously, we prepared the mononuclear complex [$\mathrm{Pt}\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}\right)_{2}$] (III) by, in effect, deprotonating the complex $\left[\mathrm{Pt}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]^{2+}$ with $\mathrm{KOH} /$ EtOH [5]. It appears that deprotonation of this dipositively-charged complex proceeds more readily than that of similar neutral platinum/dppm complexes [6]. We now find that deprotonation of the dipositively-charged diplatinum(I) complex cation in $\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]^{2+} \cdot 2\left[\mathrm{PF}_{6}\right]^{-}$(IV) [7] also occurs with $\mathrm{KOH} / \mathrm{EtOH}$ and affords the novel diplatinum complex $\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{2}-\right.$ $\left.\left(\mu-\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}(\mathrm{V})$ in 55% yield.

(A)

(C)

(B)

(D)

(IV)
(五)

The deprotonation may also be effected in similar yield by using III as a proton acceptor:
$\mathrm{IV}+\left[\mathrm{Pt}\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)_{2}\right] \rightarrow \mathrm{V}+\left[\mathrm{Pt}\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$
(VI)

The "mixed" complexes V and VI are readily separated by treatment with aqueous buffer ($\mathrm{pH}=6.8$) containing $\left[\mathrm{PF}_{6}\right]^{-}$ion when (VI) is protonated to $\left[\mathrm{Pt}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]^{2+}$ and precipitates in the form of its $\left[\mathrm{PF}_{6}\right]^{-}$salt leaving V unchanged. This demonstrates that the deprotonation IV $\rightarrow \mathrm{V}$ is not readily reversible.

The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of V are complex and have not yet been analysed in any detail (${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 3.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PCHP}), 5.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{P}\right)$ ppm) and to characterize V unambiguously we have carried out a single crystal X-ray diffraction study.

Crystallographic data: [$\left.\mathrm{C}_{86} \mathrm{H}_{73} \mathrm{P}_{6} \mathrm{Pt}_{2}\right]\left[\mathrm{PF}_{6}\right], M=1827.5$. Monoclinic, space group $P 2_{1} / n, a 13.021(4), b 14.618(6), c 43.135(16) \AA, \beta 92.81(3)^{\circ}, U$ $8200 \AA^{3}, Z=4, D_{c} 1.48 \mathrm{~g} \mathrm{~cm}^{-3}$. The intensities of 7078 independent reflections with $I \geqslant 3 \sigma(I)$ and $2<\theta\left(\mathrm{Mo}-K_{\alpha}\right)<21^{\circ}$ have been measured, using an Enraf-Nonius CAD-4F diffractometer and Mo- K_{α} radiation ($\lambda 0.71069 \AA$). The structure was solved by the heavy atom method. Currently R is 0.09 , after a block-diagonal least-squares refinement.

Fig. 1. A perspective view of the metal coordination polyhedra in the $\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right.$ $\left.\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\right]^{+}$cation. For clarity, each of the fourteen phenyl rings is represented by its ipso carbon atom only. Selected bond lengths and angles are: $\mathrm{Pt}(1)-\mathrm{Pt}(2)$ 2.659(2), $\mathrm{Pt}-\mathrm{P}$ 2.28(1)-2.34(1), $\mathrm{Pt}(2)-\mathrm{C}(2) 2.18(3), \mathrm{P}(5)-\mathrm{C}(2) 1.82(3) \mathrm{A}, \mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{P}(1) \mathbf{1 6 5 . 2 (2) , \mathrm { Pt } (2) - \mathrm { Pt } (1) - \mathrm { P } (3) 8 4 . 9 (2) \text { , }}$ $\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{P}(5) \mathbf{6 7 . 9 (2)}, \mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(3) \mathbf{1 0 4 . 2 (3) , \mathrm { P } (1) - \mathrm { Pt } (1) - \mathrm { P } (5) 1 0 5 . 9 (3) , \mathrm { P } (3) - \mathrm { Pt } (1) - \mathrm { P } (5) , 1}$ 148.4(3), $\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{P}(2) 171.9(2), \mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{P}(4)$ 83.8(2), $\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{C}(2) 83.5(7)$, $\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{P}(4) 99.1(3), \mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{C}(2) 92.5(7), \mathrm{P}(4)-\mathrm{Pt}(2)-\mathrm{C}(2) 165.0(7)^{\circ}$.

The novel feature of the structure of V (Fig. 1) is that the anionic ligand $\left[\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right]^{-}$(I) has undergone metallation at the deprotonated methylenic carbon atom. The metal centres are bridged through the $\mathrm{Pt}(2)-\mathrm{C}(2)$ and $\mathrm{Pt}(1)-\mathrm{P}(5)$ bonds to form a four-membered dimetallacycle, while the $P(6)$ atom remains unattached to either platinum atom. The overall steric congestion in this highly crowded complex is therefore considerably relieved.

The other noteworthy structural feature is that both metal atoms show unusually large distortions from the ideal square planar coordination geometry, as is immediately obvious from the bond angles shown in Fig. 1. The distortion around the $\mathrm{Pt}(1)$ atom is tetrahedral, the $\mathrm{Pt}(2), \mathrm{P}(5), \mathrm{P}(1)$ and $\mathrm{P}(3)$ atoms lying alternately ca. $0.25 \AA$ above and below their common plane with $\mathrm{Pt}(1)$. In contrast, the $\mathrm{Pt}(2)$ atom displays a pyramidal distortion and lies $0.163 \AA$ above its coordination plane; the atoms $\mathrm{Pt}(1), \mathrm{P}(2), \mathrm{P}(4)$ and $\mathrm{C}(2)$ are coplanar to within $0.006 \AA$.

The $\mathrm{Pt}-\mathrm{Pt}$ distance of 2.659 (2) \AA agrees well with the $\mathrm{Pt}^{\mathrm{I}}-\mathrm{Pt}^{\mathrm{I}}$ bond lengths in dinuclear complexes $\left[\mathrm{Pt}_{2} \mathrm{XX}^{\prime}(\mu-\mathrm{dppm})_{2}\right]^{n+}\left(\mathrm{X}:=\mathrm{X}^{\prime}=\mathrm{Cl}, n=0 ; \mathrm{X}=\mathrm{Cl}, \mathrm{X}^{\prime}=\right.$ $\mathrm{CO}, n=1 ; \mathrm{X}=\mathrm{X}^{\prime}=\mathrm{CO}, n=2$) [8]. We therefore prefer to consider V as a species with a normal covalent bond between two d^{9} platinum(I) ions, and to ascribe the observed distortions from square planar geometry to steric crowding. An alternative interpretation, formulating V as a mixed-valence complex with a $\mathrm{Pt}^{0} \rightarrow \mathrm{Pt}{ }^{\Pi I}$ donor-acceptor bond, is also tenable and has the merit of explaining the substantial tetrahedral distortion around the $\mathrm{Pt}(1)$ atom in terms of electronic effects.

Acknowledgements. We thank the S.E.R.C. for a post-doctoral research assistantship (to A.Y.) and the S.E.R.C. and the University of Glasgow for the SEL 32/27 computer.

References

1 M.P. Brown, S.J. Cooper, A.A. Frew, Lj. Manollović-Muir, K.W. Muir, R.J. Puddephatt and M.A. Thomson, J, Chem. Soc., Dalton Trans, (1982) 299 and ref. cited therein.

2 H. Schmidbaur, J.R. Mandl, J.-M. Bassett, G. Blaschke and B. Zimmer-Gasser, Chem. Ber., 114 (1981) 433; C.E. Briant, K.P. Hall and D.M. Mingos, J. Organomet. Chem., 229 (1982) C5.
3 A. Camus, N. Marsich, G. Nardin and L. Randaccio, J. Organomet. Chem., 60 (1973) C39; J.W.A. van der Velden, J.J. Bour, F.A. Vollenbroek, P.T. Beurskens and J.M.M. Smits, J. Chem. Soc., Chem. Commun., (1979) 1162.
4 G.M. Dawkins, M. Green, J.C. Jeffry, C. Sambale and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1983) 499.

5 M.P. Brown, A. Yavari, Lj. Manojlovié-Muir, K.W. Muir, R.P. Moulding and K.R. Sedion, J. Organomet. Chem., 236 (1982) C33.

6 J. Browning, G.W. Bushnell and K.R. Dixon, J. Organomet. Chem., 198 (1980) C11: S. Al-Jibori and B.L. Shaw, Inorg. Chim. Acta, 65 (1982) L123.

7 M.P. Brown, S.J. Franklin, R.J. Puddephatt, M.A. Thomson, and K.R. Sedion, J. Organomet. Chem,, 178 (1979) 281.
8 Lj. Manojlović-Muir, K.W. Muir and T. Solomun, Acta Crystallogr., B, 35 (1978) 1237; Lj. ManojlovićMuir, K.W. Muir, and T. Solomun, J. Organomet. Chem., 179 (1979) 479; J.R. Fisher, A.J. Mills, S. Sumner, M.P. Brown, M.A. Thomson, R.J. Puddephatt, A.A. Frew, LJ. Manojlović-Muir and K.W. Muir, Organometallics, 1 (1982) 1421.

JOURNAL OF ORGANOMETALLIC CHEMISTRY, VOL. 256, NO. 1

AU'THOR INDEX

Alt, H.G., C12
Amamria, A., 37
Angoletta, M., 169
Bauer, C., 147
Berlan, J., 181
Besace, Y., 181
Bras, P., C1
Braunstein, P., 125
Briant, C.E., C15
Brown, M.P., C19

Canziani, F., 169
Cognion, J.M., 135
Cresson, P., 181
Csákvári, B., 11

Del Pino, C., 75
Denise, B., 135
Dormond, A., 47
Durual, P., 135
Dusausoy, Y., 125
España, N., 141
Franken, S., 23
Gen, A. van der, C1
Gomez, P., 141
Herrmann, W.A., 147
Hor, T.S.A., C15
Howells, N.D., C15
Iglesias, M., 75
Isnard, P., 135

King, R.B., 71
Knausz, D., 11
Kreiter, C.G., 57
Kuhn, N., C5
Kuz'min, O.V., 97
Lauer, M., 1
Lebedev, A.V., 97
Leshina, T.V., 31
Llorente, A., 75
Lokshin, B.V., 89
Lukas, B., 103

McPartlin, M., 111
Mangeot, J.-P., 125
Manojlović-Muir, L., C19
Margorskaya, O.I., 31
Meszticzky, A., 11
Mikaya, A.I., 97
Mingos, D.M.P., C15
Mitchell, T.N., 37
Molin, Yu.N., 31
Muir, K.W., C19
Neugebauer, D., 43
Nugent, W.A., C9
Özkar, S., 57
Pourcelot, G., 181
Puff, H., 23
Raithby, P.R., 111
Roberts, R.M.G., 103
Rosé, J., 125
Royo, P., 141

Ruitenberg, K., 175
Sagdeev, R.Z., 31
Salikhov, K.M., 31
Santos, A., 75
Schäfer, A., 147
Schubert, U., 43
Schuh, W., 23
Shimura, M., 71
Silver, J., 103
Smart, B.E., C9
Sneeden, R.P.A., 135
Szakács, L., 11

Taraban, M.B., 31
Trusova, E.A., 97
Tuissi, M., 169
Tyurin, V.D., 97

Ujszászy, K., 11

Van der Gen, A., C1
Vazquez de Miguel, A., 141
Vermeer, P., 175
Vichi, E.J.S., 111
Vyazankin, N.S., 31
Wells, A.S., 103
Winter, M., C5
Wolters, J., C1
Wulff, G., 1
Yavari, A., C19
Yezernitskaya, M.G., 89
Zaikin, V.G., 97

